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ABSTRACT 
 
     Obtaining soil property data in underground spaces is challenging due to limited 
access and the inherent spatial variability of soils. This study proposes a machine 
learning-based three-dimensional Geotechnical Distance Field (3D-GDF-ML) framework 
for reliable and computationally efficient geotechnical interpolations. A synthetic 
Gaussian random field of cone tip pressure was generated to evaluate the performance 
and uncertainty of the developed 3D-GDF-ML. Several ML algorithms were selected to 
evaluate the best-performing ML model for the proposed framework. It was found that 
random forest was the best-performing ML algorithm for 3D-GDF-ML-based geospatial 
interpolation. In addition, optimal interval of site investigation for reliable interpolation 
using 3D-GDF-ML model indicates the applicability of developed framework for sparse 
site investigation dataset. 
 
1. INTRODUCTION 
 
 Quantifying the spatial variability of soil properties is fundamental to assessing 
the safety and serviceability of geoinfrastructures in underground space. However, 
sparse and highly variable site data make direct characterization of these properties 
challenging (Louppe et al., 2013). Consequently, accurate geospatial interpolation of soil 
properties is crucial for design and risk assessments of underground structures. Classical 
geostatistical techniques such as Kriging (Isaaks & Srivastava, 1989), are the most 
popular, as they provide the best linear unbiased estimates and clear covariance 
framework. However, the accuracy of these methods diminishes when critical 
parameters (e.g., scale of fluctuation) must be inferred from limited horizontal data, and 
their reliance on linear assumptions can mask complex local trends. More recently, 
machine-learning (ML)-based algorithms such as random forests (RF), extreme gradient 
boosting (XGB), extra trees (ET), gradient boosting (GB), and K-nearest neighbors 
(KNN), especially tree-based ensemble models, have gained popularity in geospatial 
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interpolation due to their capabilities of delivering smooth interpolation from highly 
nonlinear profiles. Nevertheless, when trained on raw Cartesian coordinates, these ML 
algorithms may struggle to capture intrinsic spatial correlations and coordinate-to-
distance transformations, which can cause decrease in predictability in data-sparse 
settings. To overcome this limitation, a geotechnical distance field (GDF) model (Xie et 
al., 2022) was introduced to explicitly quantify spatial relationships for efficient and 
accurate geotechnical interpolation. However, the proposed GDF model was only for 
two-dimensional data. Therefore, this study proposes a three-dimensional geotechnical 
distance field (3D-GDF) framework to interpolate soil properties in three-dimensional 
domain. The uncertainty quantification of the developed framework and the optimal 
interval between site investigation for reliable interpolation using 3D-GDF are also 
discussed. 
  
2. METHODOLOGY AND RESULTS 
 

2.1 Background and proposed three-dimensional spatial interpolation framework 
 
The proposed 3D-GDFs framework follows the concept introduced in Xie et al., 

(2022) for two-dimensional GDF (2D-GDF) function. The concept consists of three main 
components but is extended to account for a 3D domain: 1) 3D surface distance field, 2) 
3D testing distance field, and 3) 3D corner distance field. The surface distance field 
represents the distance from the ground surface in the depth (Z) direction, which enables 
capturing the characteristics of depth-dependent soil properties. The testing distance 
fields represent the horizontal distance (X or Y) from each testing line along depth, which 
facilitates quantification of horizontal distance from the measured soil properties. Corner 
distance fields store the shortest distance to each domain corner, thereby providing 
smooth and continuous interpolation throughout the 3D domain. A visualization with nine 
measured dataset locations (e.g., CPTs locations) in a 5 × 5 × 4 grid in Figure 1 yields 
eighteen distance fields whose Euclidean values populate the training matrix. For 
example, the vector for sample A lists the GDF values at a location with known soil 
properties [0; 0; 2; 4; …; 5.66; 19; 0; 4; 19.42; 19.42; 4; 5.66; 19.82]. Once the ML-based 
model is trained, unknown properties (e.g., sample B in Figure 1) can be predicted from 
the GDF values at corresponding location of unknown soil properties [0; 1; 1; 3; ...; 5; 
19.03; 1; 3; 19.24; 19.44; 4.12; 5; 19.65]. The proposed 3D-GDF offers three key 
advantages: (i) enhanced ability to capture complex subsurface geometry and depth-
dependent variability, (ii) direct estimation and visualization of fully three-dimensional 
property fields crucial for geostructural and underground-space design, and (iii) 
adaptability to heterogeneous geological settings, which broadens the applicability 
across diverse geotechnical problems while ensuring a consistent, data-efficient platform 
for uncertainty quantification and the spatial optimization of site investigation. 
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Fig. 1 Illustration of developed 3D-GDF framework for 3-by-3 site investigations. 

2.2 Results obtained with proposed framework 
 

To identify the best-performing model for the proposed 3D-GDF framework, five 
machine-learning algorithms— ET, RF, GB, XGB and KNN were evaluated. Optimal 
hyperparameters for each learner were obtained through Bayesian optimization, and the 
performance of all algorithms was evaluated using root-mean-square error (RMSE) and 
coefficient of determination (R2). To train and assess the employed ML models, a 
synthetic three-dimensional random field of corrected cone tip resistance (qt) was 
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generated using an open-source Python module named GSTools (Müller et al., 2022). 
The domain dimensions were 50 m × 50 m horizontally and 20 m vertically, with mesh 
resolution in z-direction (δz) = 0.05 m and mesh in both x and y directions (δx) = (δy) = 
0.5 m. The random field created, based on a Gaussian semi-variogram, provided a 
statistically controlled representation of spatial variability while allowing reproducible 
ground-truth values. Paraview (Ahrens et al., 2005) was used to visualize the generated 
field and the interpolated outputs in three dimensions. Figure 2 illustrates the created 
three-dimensional random field of synthetic qt together with the locations of the 6 by 6 
CPT used for training, whereas the remaining grid nodes constituted an independent 
validation set for comparing the performance of each algorithm. 

 

 

Figure 2. Synthetic qt field illustration (50 m × 50 m × 20 m, number of CPTs = 36) 
  
 Table 1 summarizes the performance of the 3D-GDF ML-based spatial 
interpolation framework implemented with ET, RF, GB, XGB and KNN. Across all models, 
R2 values on the test dataset lie between 0.899 and 0.914 and the RMSE range from 
0.722 to 1.10, indicating generally strong performance of developed models. This is 
further confirmed through the visualization with scatter plots in Figure 3. Among the five 
developed ML models, RF achieved the highest accuracy (R² = 0.914). While XGB 
obtained a comparable results of R² = 0.912 with shorter runtime but showed overfitting 
at lower bound values due to the inherent sequential boosting, which can cause bias 
towards specific features when the dataset is sparsely available (~15 000 training points 
for 6 by 6 CPTs) compared to a four million nodes prediction grid. ET model, although 
usually considered to be more efficient than RF, yielded a lower R² = 0.907. This can be 
attributed to the fully random split thresholds of ET that produce less diverse ensembles 
and higher bias. KNN showed severe overfit, recording a near-zero training RMSE yet 
the weakest generalization (R² = 0.899), while GB performed intermediately. From the 
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results obtained, RF was determined to be the best-performing ML algorithm, differing 
from the 2D-GDF study where ET prevailed, demonstrating that the optimal learner is 
governed by the dimensionality of the data, grid density and value range. The best-
performing RF-based 3D-GDF model (3D-GDF-RF) is adopted for subsequent 
evaluations. The visualization of interpolation using 3D-GDF-RF shown in Figure 4 
confirms that the predicted qt values closely resemble the synthetic qt field in Figure 2. 
 
Table 1. R2 and RMSE scores of ML algorithms after hyperparameters tuning. 

Machine Learning  
algorithm 

Averaged values after 10 simulations 

Train Test Run time (s) 

ET 
R2 0.9354 0.9065 

456 
RMSE 0.9156 1.1905 

RF 
R2 0.9490 0.9140 

741 
RMSE 0.7219 1.0947 

GB 
R2 0.9439 0.9109 

798 
RMSE 0.7950 1.1352 

XGB 
R2 0.9441 0.9129 

275 
RMSE 0.7456 1.1090 

KNN 
R2 1.000 0.899 

135 
RMSE 3.4232e-10 1.2861 
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Figure 3. Predicted and measured qt for test dataset (4,090,601 data). 
 

 

Figure 4. Predicted qt values obtained with 3D-GDF-RF model. 
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2.3 Impact of data availability on the proposed framework 
 

Figure 5 presents the R² and RMSE values for each ML algorithm, obtained with 
δz = 0.05 m, as a function of CPT spacing. As observed in Figure 5, the accuracy of the 
RF-GDF model declines as the CPT spacing (δx) widens from 5.56 m, with number of 
CPTs (NCPTs) = 100, to 50 m (NCPTs = 4). The test-set R² values fall and RMSE values 
rise sharply at δx = 50 m, whereas only modest R² reductions occur between 5 m and 25 
m, indicating that reliable interpolation is maintained when investigations are performed 
at intervals less than 25 m. This spacing aligns with previous studies on CPT site 
investigations for large-scale projects (Eid et al., 2018). Accordingly, the high prediction 
accuracy achieved for δx < 25 m suggests that the proposed framework can be applied 
to large-scale projects. Because the given results are obtained with δz = 0.05 m, the 
abovementioned implications are only valid for semi-continuous site investigation data. 
Therefore, the influence of δz values was also evaluated. 

 

  

Figure 5. R2 (a) and RMSE (b) values of five ML-GDF models as a function CPT 
interval. 

 
Figure 6(a) demonstrates the performance of the RF-GDF model as a function of 

δz, ranging from 0.05 to 5 m (NCPTs = 36), highlighting a clear reduction in R² values for 
both training and test datasets as δz increases, indicating the critical role of vertical data 
resolution for accurate predictions. Higher δz intervals also lead to increased uncertainty, 
as evidenced by the broader range of R² values (0.07 to 0.52) at δz = 5 m for the test 
dataset. Nonetheless, the framework still achieves a high R² > 0.8 at δz = 1.5 m, indicating 
a practical balance between computational efficiency and accuracy due to significantly 
reduced data requirements and faster computation compared to δz = 0.05 m. Figure 6(b) 
illustrates the R2 results for training and testing dataset as a function of NCPTs at δz = 4 
m. The results indicate that model accuracy improves with increasing NCPTs, although 
this improvement saturates after NCPTs = 9, implying an optimal site investigation density 
(i.e., spacing of δx) exists to balance accuracy with cost-efficiency. The study also 
identifies limitations, emphasizing that high-resolution investigations, such as CPT or 
dilatometer tests, are critical for reliable interpolation, whereas lower-resolution data from 
SPT might compromise prediction accuracy. Nevertheless, moderate investigation 
densities at larger vertical intervals (e.g., δz = 4 m, NCPTs = 36) can still yield acceptable 
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results (R² ~ 0.4), as illustrated in Figure 6(c), which are comparable to predictions 
obtained at δz < 4 m, suggesting increased horizontal density can partially compensate 
for low δz. The flexibility of the proposed framework in accommodating varying data 
intervals in x, y, and z directions indicate the strong applicability of the proposed 
framework for any geotechnical site investigation techniques. 

 

  

 

Figure 6. (a) RF-GDF model R2 values as a function of δz at NCPTs = 36, (b) RF-GDF 
model R2 values as a function of NCPTs at δz = 4 m, (c) predicted qt field at δz = 4 m. 

 
3. CONCLUSIONS 
 
 This study proposed an ML-based GDF model for reliable 3D geotechnical 
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the necessity of adequate investigation interval, an NCPTs value of 36 (i.e., CPT spacing 
of 10 m) provided reliable interpolation with low uncertainty. In addition, comparable qt 
predictions between sparse (δz = 4 m) and dense (δz = 0.05 m) vertical intervals suggest 
the robustness and applicability of the developed framework with limited site investigation 
data, emphasizing the practical use of the proposed framework in geotechnical 
interpolations.  
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